coset$500514$ - définition. Qu'est-ce que coset$500514$
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est coset$500514$ - définition

GROUP, AND H IS A SUBGROUP OF G, AND G IS AN ELEMENT OF G, THEN ONLY WHEN H IS NORMAL WILL THE SET OF RIGHT COSETS AND THE SET OF LEFT COSETS OF H COINCIDE
Left coset; Right coset; Coset representative; Cosets; Coset in a group
  • [''G'' : ''H'']}} is 4.

coset         
['k??s?t]
¦ noun Mathematics a set composed of all the products obtained by multiplying each element of a subgroup in turn by one particular element of the group containing the subgroup.
Coset         
In mathematics, specifically group theory, a subgroup of a group may be used to decompose the underlying set of into disjoint, equal-size subsets called cosets. There are left cosets and right cosets.
Homogeneous space         
  • A [[torus]]. The standard torus is homogeneous under its [[diffeomorphism]] and [[homeomorphism]] groups, and the [[flat torus]] is homogeneous under its diffeomorphism, homeomorphism, and [[isometry group]]s.
TOPOLOGICAL SPACE THAT IS THE SPACE OF COSETS OF A TOPOLOGICAL GROUP
Homogeneous spaces; Coset space; Homogenous space; Inhomogeneous space
In mathematics, particularly in the theories of Lie groups, algebraic groups and topological groups, a homogeneous space for a group G is a non-empty manifold or topological space X on which G acts transitively. The elements of G are called the symmetries of X.

Wikipédia

Coset

In mathematics, specifically group theory, a subgroup H of a group G may be used to decompose the underlying set of G into disjoint, equal-size subsets called cosets. There are left cosets and right cosets. Cosets (both left and right) have the same number of elements (cardinality) as does H. Furthermore, H itself is both a left coset and a right coset. The number of left cosets of H in G is equal to the number of right cosets of H in G. This common value is called the index of H in G and is usually denoted by [G : H].

Cosets are a basic tool in the study of groups; for example, they play a central role in Lagrange's theorem that states that for any finite group G, the number of elements of every subgroup H of G divides the number of elements of G. Cosets of a particular type of subgroup (a normal subgroup) can be used as the elements of another group called a quotient group or factor group. Cosets also appear in other areas of mathematics such as vector spaces and error-correcting codes.